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Unit 4- Pipelining and Unfolding 
 

PIPELINING/UNFOLDING OF ITERATIVE ARCHITECTURES 
 

MULTI-OPERAND ADDITION 
▪ Addition of 𝑁 𝑛 −bit numbers (signed, unsigned) 

 
ITERATIVE DESIGN (FOLDED): ACCUMULATOR 
▪ Even if we have all the data (𝑁 numbers) ready, we can only 

feed one number at a time.  
▪ We sign-extend (or zero-extend) the input 𝐷 depending on 

whether we are adding signed or unsigned numbers. 
 
▪ This architecture takes 𝑁 cycles to add 𝑁 numbers. It must wait 

one more cycle before loading the next batch of numbers. 
▪ Computation time for 𝑇 𝑁-number groups: 𝑇 × (𝑁 + 1) cycles. 

 
▪ Note how the required number of bits grow to 𝑛 + ⌈log2 𝑁⌉. 
 
 
UNFOLDED ACCUMULATOR: 
▪ Unfolding: for each iteration, the architecture that computes that iteration is replicated. To add 𝑁 numbers, we need to 

apply 𝑁 − 1 additions. For example, for 𝑁 = 7, the unfolded version of the iterative architecture is shown below. It is called 

‘Direct Unfolding’ architecture. 
▪ Note that we can optimize this ‘Direct Unfolding’ architecture by using an Adder Tree. 
 
▪ Adder Tree: Structure that optimizes the number of two-input adders. 

✓ Adder Levels: This is given by ⌈log2 𝑁⌉. A level is a set of adders whose inputs have the same bit-width.  

✓ Number of output bits: 𝑛 + ⌈log2 𝑁⌉. 
✓ If 𝑁 is not a power of 2, some adder levels will have data inputs that are passed (sign-extended or zero-extended) to 

the next adder level. Within an adder, we increase the number of bits depending on the representation: 
 Signed numbers: at every level, we need to sign extend the operands, in order to get the proper result. 

 Unsigned numbers: you can zero-extend the operands, or just use the carry out as the MSB of the result. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ This unfolded architecture can process a group of 𝑁 numbers in one clock cycle at the expense of a large increase in 

hardware resources. Computation time for 𝑇 groups of 𝑁 numbers: 𝑇 cycles. 

▪ Note that if you can only produce one number per clock cycle, the iterative architecture is the best option. 
▪ Even though data can be computed in clock cycle, the propagation delay is very large, and thus the clock cycle period will 

be large. To increase the frequency of operation, we need to apply pipelining. 
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PIPELINED DESIGN (UNFOLDED): ADDER TREE 
▪ Pipelining: Registers are inserted in between the architecture in order to increase the frequency of operation. 

✓ The number of register levels to include depends on the architecture. 
✓ Initial Latency: Output data will be ready a number of cycles (= register levels) after input data is loaded. 
✓ Note that we can load new input data at every new cycle. After the initial latency, we get output results every clock cycle. 

Overtime, the initial latency can be considered negligible. 
 
▪ Adder Tree: ⌈log2 𝑁⌉ register levels (or 

I/O delay). This is the same as the Initial 
latency. 

▪ Note: For 𝑁 = 7, we do not omit a register 

on the second register level when there is 
no adder. This is called a synchronization 
register and it makes sure that data 
arrives at the correct time. 

▪ Computation time for 𝑇 groups of 𝑁 

numbers: 𝑇 + ⌈log2 𝑁⌉ cycles. 

 
 
 
 
 
 
Timing Comparison 
▪ An enable and a valid bit are added to the pipelined design. 

This is done via a  ⌈log2 𝑁⌉-bit shift register. 
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MULTIPLICATION 
 

UNSIGNED MULTIPLICATION 
▪ We already know the iterative version of the multiplier. Here, we show how to implement the multiplication using an array 

multiplier. In this implementation, two rows are added up at each stage. 
▪ We start from the iterative version (Unit 2) of the multiplier. As in the case of the Accumulator, if we directly unfold the 

iterative multiplier, the resulting architecture will not be optimal. Here we show an optimized architecture. 
 
▪ Unfolded version (purely combinational): Here, we have a different hardware for every summation of two rows. 
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▪ Pipelined version: To increase frequency of operation, we place registers at every stage. Here, we are also including an 
enable input and a valid output. 

▪ Note the synchronization registers included to make sure that data arrives at the right time. This applied to the input bits 
b3-b0 and output bits p2, p1, p0 and p7.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIGNED MULTIPLICATION 

▪ We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage. 
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DIVISION 
 

▪ This is based on the iterative algorithm for dividers presented in Unit 2. The architecture was unfolded and then optimized. 
 
RESTORING ARRAY DIVIDER FOR UNSIGNED INTEGERS 
 
▪ 𝐴,𝐵: positive integers in unsigned representation. 𝐴 = 𝑎𝑁−1𝑎𝑁−2 …𝑎0 with 𝑁 bits, and 𝐵 = 𝑏𝑀−1𝑏𝑀−2 …𝑏0 with 𝑀 bits, with 

the condition that 𝑁 ≥ 𝑀. 𝑄 = 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡, 𝑅 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒. 𝐴 = 𝐵 × 𝑄 + 𝑅. 

 
In this parallel implementation, the result of every stage is called 
the remainder 𝑅𝑖.  

 
The figure depicts the parallel algorithm with 𝑁 stages. For each 
stage 𝑖, 𝑖 = 0,… , 𝑁 − 1, we have: 

𝑅𝑖: output of stage 𝑖. Remainder after every stage.  

𝑌𝑖: input of stage 𝑖. It holds the minuend.  

 
For the next stage, we append the next bit of 𝐴 to  𝑅𝑖. This becomes 

𝑌𝑖+1 (the minuend): 
𝑌𝑖+1 = 𝑅𝑖&𝑎𝑁−1−𝑖 , 𝑖 = 0,… , 𝑁 − 1 

 
At each stage 𝑖, the subtraction 𝑌𝑖 − 𝐵 is performed. If 𝑌𝑖 ≥ 𝐵 then 
𝑅𝑖 = 𝑌𝑖 − 𝐵. If 𝑌𝑖 < 𝐵, then 𝑅𝑖 = 𝑌𝑖. 

 

Stage 𝑌𝑖 Computation of 𝑅𝑖 
# of 

𝑅𝑖 bits 

0 𝑌0 = 𝑎𝑁−1 
𝑅0 = 𝑌0 − 𝐵, 𝑖𝑓 𝑌0 ≥ 𝐵 
𝑅0 = 𝑌0, 𝑖𝑓 𝑌0 < 𝐵 

1 

1 𝑌1 = 𝑅0&𝑎𝑁−2 
𝑅1 = 𝑌1 − 𝐵, 𝑖𝑓 𝑌1 ≥ 𝐵 
𝑅1 = 𝑌1, 𝑖𝑓 𝑌1 < 𝐵 

2 

2 𝑌2 = 𝑅1&𝑎𝑁−3 
𝑅2 = 𝑌2 − 𝐵, 𝑖𝑓 𝑌2 ≥ 𝐵 
𝑅2 = 𝑌2, 𝑖𝑓 𝑌2 < 𝐵 

3 

… … … … 

M-1 𝑌𝑀−1 = 𝑅𝑀−2&𝑎𝑀−𝑁 
𝑅𝑀−1 = 𝑌𝑀−1 − 𝐵, 𝑖𝑓 𝑌𝑀−1 ≥ 𝐵 
𝑅𝑀−1 = 𝑌𝑀−1, 𝑖𝑓 𝑌𝑀−1 < 𝐵 

M 

 
Since 𝐵 has 𝑀 bits, the operation 𝑌𝑖 − 𝐵 requires 𝑀 bits for both 

operands. To maintain consistency, we let 𝑌𝑖 be represented with 𝑀 

bits. 
 
𝑅𝑖: output of each stage. For the first 𝑀 stages, 𝑅𝑖 requires 𝑖 + 1 
bits. However, for consistency and clarity’s sake, since 𝑅𝑖 might be 

the result of a subtraction, we let 𝑅𝑖 use 𝑀 bits.  

 
For stages 0 𝑡𝑜 𝑀 − 1: 

𝑅𝑖 is always transferred onto the next stage. Note that we transfer 

𝑅𝑖 with 𝑀 − 1 least significant bits. There is no loss of accuracy here 
since 𝑅𝑖 at most requires 𝑀 − 1 bits for stage 𝑀 −  . We need 𝑅𝑖 

with M-1 bits since 𝑌𝑖+1 uses 𝑀 bits. 

 
Stages 𝑀 𝑡𝑜 𝑁 − 1: 

Starting from stage 𝑀 − 1, 𝑅𝑖 requires 𝑀 bits. We also know that 

the remainder requires at most 𝑀 bits (maximum value is  𝑀 −  ).  

So, starting from stage M-1 we need to transfer 𝑀 bits. 
As 𝑌𝑖+1 now requires 𝑀 + 1 bits, we need 𝑀 + 1 units starting from stage 𝑀. 

 
▪ To implement the operation 𝑌𝑖 − 𝐵 we use a subtractor. When 𝑌𝑖 ≥ 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 1, and when 𝑌𝑖 < 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 0.  This 𝑐𝑜𝑢𝑡𝑖 

becomes a bit of the quotient:  𝑄𝑖 = 𝑐𝑜𝑢𝑡𝑁−1−𝑖. This quotient Q requires N bits at most.  

▪ Also, the final remainder is the result of the last stage. The maximum theoretical value of the remainder is  𝑀 −  , thus the 

remainder 𝑅 requires 𝑀 bits. 𝑅 = 𝑅𝑁−1. 
▪ Also, note that we should avoid a division by 0. If 𝐵 = 0, then, in our circuit: 𝑄 =  𝑁 − 1 and R = 𝑎𝑀−1𝑎𝑀−2 …𝑎0. 

  

Parallel implementation algorithm 
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COMBINATIONAL ARRAY DIVIDER (UNFOLDED) 
 
The figure shows the hardware of this array divider for N=8, M=4. Note that the first 𝑀 =   stages only require 4 units, while 

the next stages require 5 units. This is fully combinatorial implementation. 
▪ Each level computes 𝑅𝑖. It first computes 𝑌𝑖 − 𝐵. When 𝑌𝑖 ≥ 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 1, and when 𝑌𝑖 < 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 0. This 𝑐𝑜𝑢𝑡𝑖 is used 

to determine whether the next 𝑅𝑖 is 𝑌𝑖 − 𝐵 or 𝑌𝑖. 
▪ Each Processing Unit (PU) is used to process 𝑌𝑖 − 𝐵 one bit at a time, and to let a particular bit of either 𝑌𝑖 − 𝐵 or 𝑌𝑖 be 

transferred on to the next stage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
FULLY PIPELINED ARRAY DIVIDER 
 
The figure shows the hardware core of the fully pipelined array divider with its inputs, outputs, and parameters.  
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The figure shows the internal architecture of this pipelined array divider for N=8, M=4. Note that the first M=4 stages only 
require 4 units, while the next stages require 5 units. Note that the enable input ‘E’ is only an input to the shift register on the 
left, which is used to generate the valid output 𝑣. This way, valid outputs are readily signaled. If E=’1’, the output result is 

computed in N cycles (and v=’1’ after N cycles). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
SIGNED DIVISION 
▪ We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage. 
 

  

Fully Pipelined Array Divider architecture for N=8, M=4 
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SQUARE ROOT 
▪ We use the optimized algorithm of Unit 4. 
▪ Unfolding: every single iteration is implemented by a particular hardware. By observing the algorithm, we need 𝑛 stages 

with 𝑛 adder/subtractors.  

▪ As in the case of the iterative circuitry, there is a reduction in this case as well for the first iteration: 
𝑅′𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2 − 01 

𝑞𝑛−1 = {
1, 𝑖𝑓𝑅′𝑛−1 ≥ 0

0, 𝑖𝑓𝑅′𝑛−1 < 0
 

 
 → 𝑞𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2, 𝑏 = 𝑑2𝑛−1𝑑2𝑛−2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑎 = 𝑑2𝑛−2
̅̅ ̅̅ ̅̅ ̅̅  

 
𝑅′𝑛−1 requires 𝑛 − (𝑛 − 1) + 1 =   bits, thus we only use 

the last 2 LSBs of the result. 
 
Also, since these are few logic gates on the first iteration, 
we can embed the first and second stages into one 
stage. Finally, we include registers levels at every stage. 
We have 𝑛 − 1 register stages.  

 
In addition, you can always add a shift register for E and 
v. 
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CORDIC 
▪ Here, we just need to implement every iteration as a different hardware architecture. The figure shows the circular CORDIC 

for fixed point arithmetic. 
▪ Unfolding: This is a very straightforward operation: we just repeat each iteration of the iterative CORDIC architecture. No 

optimization is applied. The output of each iteration becomes the input of the next iteration. 
▪ Pipelining: It consists of adding registers between stages. The initial latency is 𝑁 cycles, where 𝑁 is the number of CORDIC 

iterations. We can feed new data (𝑥0, 𝑦0, 𝑧0, mode) at every clock cycle. 𝑁 cycles after the first operation, this circuit can 

produce output data (𝑥𝑁 , 𝑦𝑁, 𝑧𝑁) every clock cycle.  
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