
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

1 Instructor: Daniel Llamocca

Unit 4- Pipelining and Unfolding

PIPELINING/UNFOLDING OF ITERATIVE ARCHITECTURES

MULTI-OPERAND ADDITION
▪ Addition of 𝑁 𝑛 −bit numbers (signed, unsigned)

ITERATIVE DESIGN (FOLDED): ACCUMULATOR
▪ Even if we have all the data (𝑁 numbers) ready, we can only

feed one number at a time.
▪ We sign-extend (or zero-extend) the input 𝐷 depending on

whether we are adding signed or unsigned numbers.

▪ This architecture takes 𝑁 cycles to add 𝑁 numbers. It must wait

one more cycle before loading the next batch of numbers.
▪ Computation time for 𝑇 𝑁-number groups: 𝑇 × (𝑁 + 1) cycles.

▪ Note how the required number of bits grow to 𝑛 + ⌈log2 𝑁⌉.

UNFOLDED ACCUMULATOR:
▪ Unfolding: for each iteration, the architecture that computes that iteration is replicated. To add 𝑁 numbers, we need to

apply 𝑁 − 1 additions. For example, for 𝑁 = 7, the unfolded version of the iterative architecture is shown below. It is called

‘Direct Unfolding’ architecture.
▪ Note that we can optimize this ‘Direct Unfolding’ architecture by using an Adder Tree.

▪ Adder Tree: Structure that optimizes the number of two-input adders.

✓ Adder Levels: This is given by ⌈log2 𝑁⌉. A level is a set of adders whose inputs have the same bit-width.

✓ Number of output bits: 𝑛 + ⌈log2 𝑁⌉.
✓ If 𝑁 is not a power of 2, some adder levels will have data inputs that are passed (sign-extended or zero-extended) to

the next adder level. Within an adder, we increase the number of bits depending on the representation:
 Signed numbers: at every level, we need to sign extend the operands, in order to get the proper result.

 Unsigned numbers: you can zero-extend the operands, or just use the carry out as the MSB of the result.

▪ This unfolded architecture can process a group of 𝑁 numbers in one clock cycle at the expense of a large increase in

hardware resources. Computation time for 𝑇 groups of 𝑁 numbers: 𝑇 cycles.

▪ Note that if you can only produce one number per clock cycle, the iterative architecture is the best option.
▪ Even though data can be computed in clock cycle, the propagation delay is very large, and thus the clock cycle period will

be large. To increase the frequency of operation, we need to apply pipelining.

QD

resetn

+ Q

D

E s
c
l
r

sclr

sign

extension

E

Q=0 if E=sclr=1

+++

++

+

X(0) X(1) X(2) X(3) X(4) X(5) X(6)

N=7 𝑛 + log2 𝑁

𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛

𝑛 +1𝑛 +1𝑛 +1𝑛 +1

𝑛 + 𝑛 +

𝑛 +

+

X(0) X(1)

𝑛 𝑛

𝑛 +1

X(2)

𝑛

𝑛 +

X(3)

𝑛
X(4)

𝑛
X(5)

𝑛
X(6)

𝑛

+

𝑛 +
+

𝑛 +
+

𝑛 +
+

𝑛 +
+

N=7

DIRECT
UNFOLDING

OPTIMIZATION
OF DIRECT

UNFOLDING

𝑛 +𝑁 − 1

Adder Tree

Q

Q

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

2 Instructor: Daniel Llamocca

PIPELINED DESIGN (UNFOLDED): ADDER TREE
▪ Pipelining: Registers are inserted in between the architecture in order to increase the frequency of operation.

✓ The number of register levels to include depends on the architecture.
✓ Initial Latency: Output data will be ready a number of cycles (= register levels) after input data is loaded.
✓ Note that we can load new input data at every new cycle. After the initial latency, we get output results every clock cycle.

Overtime, the initial latency can be considered negligible.

▪ Adder Tree: ⌈log2 𝑁⌉ register levels (or

I/O delay). This is the same as the Initial
latency.

▪ Note: For 𝑁 = 7, we do not omit a register

on the second register level when there is
no adder. This is called a synchronization
register and it makes sure that data
arrives at the correct time.

▪ Computation time for 𝑇 groups of 𝑁

numbers: 𝑇 + ⌈log2 𝑁⌉ cycles.

Timing Comparison
▪ An enable and a valid bit are added to the pipelined design.

This is done via a ⌈log2 𝑁⌉-bit shift register.

+++

++

+

X(0) X(1) X(2) X(3) X(4) X(5) X(6)

++

+

X(0) X(1) X(2) X(3)

N=7

N=4

XA(6)

YA YB YDYC YE YF

clock

E

X

Y

Z

Q

XA XB XDXC XE XF

ZA ZB ZDZC ZE ZF

QB

XA(0) XA(1) XA(3)XA(2)D XA(4) XA(5)

QA 0

XB(0) XB(1) XB(3)XB(2) XB(4) XB(5)XA(6)

E

sclr

Q QA QB QDQC QE QF

Initial Latency:

Processing Cycles=N Processing Cycles=N

QD

resetn

+ Q

D

E s
c
l
r

sclr

sign

extension

E

Q=0 if E=sclr=1

+++

++

+

X(0) X(1) X(2) X(3) X(4) X(5) X(6)

8 11

11

9 9 9 9

10 10

11

8 8 8 8 8 8 8

Y(0) Y(3)Y(1) Y(2)

Z(0) Z(1)

Q v

E

v

XA = |XA(0)|XA(1)|XA(2)|XA(3)|XA(4)|XA(5)|XA(6)|

log2 𝑁

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

3 Instructor: Daniel Llamocca

MULTIPLICATION

UNSIGNED MULTIPLICATION
▪ We already know the iterative version of the multiplier. Here, we show how to implement the multiplication using an array

multiplier. In this implementation, two rows are added up at each stage.
▪ We start from the iterative version (Unit 2) of the multiplier. As in the case of the Accumulator, if we directly unfold the

iterative multiplier, the resulting architecture will not be optimal. Here we show an optimized architecture.

▪ Unfolded version (purely combinational): Here, we have a different hardware for every summation of two rows.

x +

+

+

a3 a2 a1 a0 x

b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
a3b3 a2b3 a1b3 a0b3

p7 p6 p5 p4 p3 p2 p1 p0

b0

b1

a0a1a2a3

FA
PUPUPUPU

PUPUPUPU

0

b2

PUPUPUPU
b3

p0p1p2p3p4p5p6p7

bi

aj

cincout

PU

0

0

x00 y00x01 y01x02 y02x03 y03

c00

0
c01c02c03c04

x10 y10x11 y11x12 y12x13 y13

x20 y20x21 y21x22 y22x23 y23

x30 y30x31 y31x32 y32x33 y33

c10c11c12c13c14

c20c21c22c23c24

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

4 Instructor: Daniel Llamocca

▪ Pipelined version: To increase frequency of operation, we place registers at every stage. Here, we are also including an
enable input and a valid output.

▪ Note the synchronization registers included to make sure that data arrives at the right time. This applied to the input bits
b3-b0 and output bits p2, p1, p0 and p7.

SIGNED MULTIPLICATION

▪ We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage.

q13

a0a1a2a3

PUPUPUPU

PUPUPUPU

0

PUPUPUPU

p0p1p2p3p4p5p6p7

0

0

0

b0 b1 b2 b3

x00 y00x01 y01x02 y02x03 y03

x10 y10x11 y11x12 y12x13 y13

x20 y20x21 y21x22 y22x23 y23

g00 q00g01 q01g02 q02g03 q03

g10 q10g11 q11g12 q12g13

g20 q20g21 q21g22 q22g23 q23

c00c01c02c03c04

c10c11c12c13c14

c20c21c22c23c24

E

v

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

5 Instructor: Daniel Llamocca

DIVISION

▪ This is based on the iterative algorithm for dividers presented in Unit 2. The architecture was unfolded and then optimized.

RESTORING ARRAY DIVIDER FOR UNSIGNED INTEGERS

▪ 𝐴,𝐵: positive integers in unsigned representation. 𝐴 = 𝑎𝑁−1𝑎𝑁−2 …𝑎0 with 𝑁 bits, and 𝐵 = 𝑏𝑀−1𝑏𝑀−2 …𝑏0 with 𝑀 bits, with

the condition that 𝑁 ≥ 𝑀. 𝑄 = 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡, 𝑅 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒. 𝐴 = 𝐵 × 𝑄 + 𝑅.

In this parallel implementation, the result of every stage is called
the remainder 𝑅𝑖.

The figure depicts the parallel algorithm with 𝑁 stages. For each
stage 𝑖, 𝑖 = 0,… , 𝑁 − 1, we have:

𝑅𝑖: output of stage 𝑖. Remainder after every stage.

𝑌𝑖: input of stage 𝑖. It holds the minuend.

For the next stage, we append the next bit of 𝐴 to 𝑅𝑖. This becomes

𝑌𝑖+1 (the minuend):
𝑌𝑖+1 = 𝑅𝑖&𝑎𝑁−1−𝑖 , 𝑖 = 0,… , 𝑁 − 1

At each stage 𝑖, the subtraction 𝑌𝑖 − 𝐵 is performed. If 𝑌𝑖 ≥ 𝐵 then
𝑅𝑖 = 𝑌𝑖 − 𝐵. If 𝑌𝑖 < 𝐵, then 𝑅𝑖 = 𝑌𝑖.

Stage 𝑌𝑖 Computation of 𝑅𝑖
of

𝑅𝑖 bits

0 𝑌0 = 𝑎𝑁−1
𝑅0 = 𝑌0 − 𝐵, 𝑖𝑓 𝑌0 ≥ 𝐵
𝑅0 = 𝑌0, 𝑖𝑓 𝑌0 < 𝐵

1

1 𝑌1 = 𝑅0&𝑎𝑁−2
𝑅1 = 𝑌1 − 𝐵, 𝑖𝑓 𝑌1 ≥ 𝐵
𝑅1 = 𝑌1, 𝑖𝑓 𝑌1 < 𝐵

2

2 𝑌2 = 𝑅1&𝑎𝑁−3
𝑅2 = 𝑌2 − 𝐵, 𝑖𝑓 𝑌2 ≥ 𝐵
𝑅2 = 𝑌2, 𝑖𝑓 𝑌2 < 𝐵

3

… … … …

M-1 𝑌𝑀−1 = 𝑅𝑀−2&𝑎𝑀−𝑁
𝑅𝑀−1 = 𝑌𝑀−1 − 𝐵, 𝑖𝑓 𝑌𝑀−1 ≥ 𝐵
𝑅𝑀−1 = 𝑌𝑀−1, 𝑖𝑓 𝑌𝑀−1 < 𝐵

M

Since 𝐵 has 𝑀 bits, the operation 𝑌𝑖 − 𝐵 requires 𝑀 bits for both

operands. To maintain consistency, we let 𝑌𝑖 be represented with 𝑀

bits.

𝑅𝑖: output of each stage. For the first 𝑀 stages, 𝑅𝑖 requires 𝑖 + 1
bits. However, for consistency and clarity’s sake, since 𝑅𝑖 might be

the result of a subtraction, we let 𝑅𝑖 use 𝑀 bits.

For stages 0 𝑡𝑜 𝑀 − 1:

𝑅𝑖 is always transferred onto the next stage. Note that we transfer

𝑅𝑖 with 𝑀 − 1 least significant bits. There is no loss of accuracy here
since 𝑅𝑖 at most requires 𝑀 − 1 bits for stage 𝑀 − . We need 𝑅𝑖

with M-1 bits since 𝑌𝑖+1 uses 𝑀 bits.

Stages 𝑀 𝑡𝑜 𝑁 − 1:

Starting from stage 𝑀 − 1, 𝑅𝑖 requires 𝑀 bits. We also know that

the remainder requires at most 𝑀 bits (maximum value is 𝑀 −).

So, starting from stage M-1 we need to transfer 𝑀 bits.
As 𝑌𝑖+1 now requires 𝑀 + 1 bits, we need 𝑀 + 1 units starting from stage 𝑀.

▪ To implement the operation 𝑌𝑖 − 𝐵 we use a subtractor. When 𝑌𝑖 ≥ 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 1, and when 𝑌𝑖 < 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 0. This 𝑐𝑜𝑢𝑡𝑖

becomes a bit of the quotient: 𝑄𝑖 = 𝑐𝑜𝑢𝑡𝑁−1−𝑖. This quotient Q requires N bits at most.

▪ Also, the final remainder is the result of the last stage. The maximum theoretical value of the remainder is 𝑀 − , thus the

remainder 𝑅 requires 𝑀 bits. 𝑅 = 𝑅𝑁−1.
▪ Also, note that we should avoid a division by 0. If 𝐵 = 0, then, in our circuit: 𝑄 = 𝑁 − 1 and R = 𝑎𝑀−1𝑎𝑀−2 …𝑎0.

Parallel implementation algorithm

Y0

R0

...

...

Y1

R1

...

Y2

R2

...

Y3

RM-2

...

YM-1

...

...

Stage 0

Stage 1

Stage 2

Stage 3

Stage M-1

RM-1

...

YM

Stage M

RM

...

YM+1

Stage M+1

RM+1

...

YM+2

Stage M+2

...

...

RN-2

...

YN-1

Stage N-1

RN-1

M bits

M+1 bits

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

6 Instructor: Daniel Llamocca

COMBINATIONAL ARRAY DIVIDER (UNFOLDED)

The figure shows the hardware of this array divider for N=8, M=4. Note that the first 𝑀 = stages only require 4 units, while

the next stages require 5 units. This is fully combinatorial implementation.
▪ Each level computes 𝑅𝑖. It first computes 𝑌𝑖 − 𝐵. When 𝑌𝑖 ≥ 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 1, and when 𝑌𝑖 < 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 0. This 𝑐𝑜𝑢𝑡𝑖 is used

to determine whether the next 𝑅𝑖 is 𝑌𝑖 − 𝐵 or 𝑌𝑖.
▪ Each Processing Unit (PU) is used to process 𝑌𝑖 − 𝐵 one bit at a time, and to let a particular bit of either 𝑌𝑖 − 𝐵 or 𝑌𝑖 be

transferred on to the next stage.

FULLY PIPELINED ARRAY DIVIDER

The figure shows the hardware core of the fully pipelined array divider with its inputs, outputs, and parameters.

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU

PU

PU

PU PU

b3 b2 b1 b0

a6

PU

PU

PU

PU PU

a7

0

000

a5

a4

a3

a2

a1

a0

q7 1

1

1

1

1

1

1

1

q6

q5

q4

q3

q2

q1

q0

r0r1r2r3

FA

b

cin

1 0

cout

a

s

r

x00

c00c03c04 c02 c01

c10c11c12c13c14

c21c22c23c24 c20

c32c33c34 c30c31

c43c44c45 c41c42 c40

c54c55 c52c53 c51 c50

c65 c63c64 c62 c61 c60

c70c74c75 c73 c72 c71

x01x02x03

x11x12x13 x10

x22x23 x20x21

x33 x30x31x32

x44 x41x42x43 x40

x50x52x53x54 x51

x61x63x64 x60x62

x72x74 x70x71x73

y03

y12 y11 y10y13

y23

y02 y01 y00

y22 y21 y20

y33 y32 y31 y30

y43y44 y42 y41 y40

y54 y53 y52 y51 y50

y64 y63 y62 y61 y60

y74 y73 y72 y71 y70

PU

Q

R

ARRAY

DIVIDER

M N

NA

B M

N

M

Fully Combinatorial Array Divider architecture for N=8, M=4

Fully pipelined IP core for the array divider

Q

R

v

ARRAY

DIVIDER

M N

NA

B

E

resetn

clock

M

N

M

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

7 Instructor: Daniel Llamocca

The figure shows the internal architecture of this pipelined array divider for N=8, M=4. Note that the first M=4 stages only
require 4 units, while the next stages require 5 units. Note that the enable input ‘E’ is only an input to the shift register on the
left, which is used to generate the valid output 𝑣. This way, valid outputs are readily signaled. If E=’1’, the output result is

computed in N cycles (and v=’1’ after N cycles).

SIGNED DIVISION
▪ We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage.

Fully Pipelined Array Divider architecture for N=8, M=4

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU PU

PU PU PU

PU

PU

PU PU

b3 b2 b1 b0 a6

PU

PU

PU

PU PU

a7

0

000 a5 a4 a3 a2 a1 a0

q7

1

1

1

1

1

1

1

1

q6 q5 q4 q3 q2 q1 q0 r0r1r2r3

x00

c00c03c04 c02 c01

c10c11c12c13c14

c21c22c23c24 c20

c32c33c34 c30c31

c43c44c45 c41c42 c40

c54c55 c52c53 c51 c50

c65 c63c64 c62 c61 c60

c70c74c75 c73 c72 c71

x01x02x03

x11x12x13 x10

x22x23 x20x21

x33 x30x31x32

x44 x41x42x43 x40

x50x52x53x54 x51

x61x63x64 x60x62

x72x74 x70x71x73

y03

y12 y11 y10y13

y23

y02 y01 y00

y22 y21 y20

y33 y32 y31 y30

y43y44 y42 y41 y40

y54 y53 y52 y51 y50

y64 y63 y62 y61 y60

y74 y73 y72 y71 y70

E

v

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

8 Instructor: Daniel Llamocca

SQUARE ROOT
▪ We use the optimized algorithm of Unit 4.
▪ Unfolding: every single iteration is implemented by a particular hardware. By observing the algorithm, we need 𝑛 stages

with 𝑛 adder/subtractors.

▪ As in the case of the iterative circuitry, there is a reduction in this case as well for the first iteration:
𝑅′𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2 − 01

𝑞𝑛−1 = {
1, 𝑖𝑓𝑅′𝑛−1 ≥ 0

0, 𝑖𝑓𝑅′𝑛−1 < 0

 → 𝑞𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2, 𝑏 = 𝑑2𝑛−1𝑑2𝑛−2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑎 = 𝑑2𝑛−2
̅̅ ̅̅ ̅̅ ̅̅

𝑅′𝑛−1 requires 𝑛 − (𝑛 − 1) + 1 = bits, thus we only use

the last 2 LSBs of the result.

Also, since these are few logic gates on the first iteration,
we can embed the first and second stages into one
stage. Finally, we include registers levels at every stage.
We have 𝑛 − 1 register stages.

In addition, you can always add a shift register for E and
v.

d2n-1 d2n-2 R'n-1 = cba qn-1

0 0 111 0

0 1 000 1

1 0 001 1

1 1 010 1

2n

+/-

0 1

Qn-1

4

2n-4

R'n-1

d2n-1

d2n-2

d2n-3d2n-4Qn-1

MSB
3

Qn-2 R'n-2

+/-

0 1

5

2n-6

d2n-5d2n-6

Qn-2

MSB
4

Qn-3 R'n-3

2

2Q1 R'1

+/-

0 1

n+2

d1d0

Q1

MSB n+1

Q0 R'0

n-1

2n-2

n-1 n 2

d2n-1d2n-2

D

...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

9 Instructor: Daniel Llamocca

CORDIC
▪ Here, we just need to implement every iteration as a different hardware architecture. The figure shows the circular CORDIC

for fixed point arithmetic.
▪ Unfolding: This is a very straightforward operation: we just repeat each iteration of the iterative CORDIC architecture. No

optimization is applied. The output of each iteration becomes the input of the next iteration.
▪ Pipelining: It consists of adding registers between stages. The initial latency is 𝑁 cycles, where 𝑁 is the number of CORDIC

iterations. We can feed new data (𝑥0, 𝑦0, 𝑧0, mode) at every clock cycle. 𝑁 cycles after the first operation, this circuit can

produce output data (𝑥𝑁 , 𝑦𝑁, 𝑧𝑁) every clock cycle.

20

0

16

Xin

40

Yin

20

+/-

Zin

Tan-1(20)

di(0)

mode

160

MSB

1

MSB

S
T

A
G

E
 0

16 16

𝑥0 𝑦0 𝑧0

+/- +/-

2-1

+/-

Tan-1(2-1)

di(1)
di(1)

0

MSB

1

𝑥1 𝑦1 𝑧1

+/- +/-

...

...

...

...

di(0)

2-(N-1)

+/-

Tan-1(2-(N-1))

di(N-1)

di(N-1)

0

MSB

1

𝑥𝑁−1 𝑦𝑁−1 𝑧𝑁−1

+/- +/-

20

Zout

16
𝑧𝑁

S
T

A
G

E
 1

S
T

A
G

E
 N

-1

4

 1 1 1 1 1 1

20 0 1 0 1

16

16

 0 1 20 16

 1 1

20 20 16

E

...

v

MSB

MSB

Yout

16
𝑦𝑁

 1 1

Xout

16
𝑥𝑁

 1 1

bb a baa

bb a baa

bb a baa

